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Abstract 

 
 
 Examination of atmospheric and oceanic circulations may explain interannual 

climate variability in the Northern Hemisphere on a seasonal scale.  It is crucial to 

develop more accurate seasonal climate forecasts using both global circulation and sea 

surface temperature (SST) indices to aid in long-range weather forecasts.  These global 

circulation and SST indices are becoming increasingly available to worldwide users and 

using them for seasonal prediction has spread not only to scientists, but also to brokerage 

firms, utilities, and the Department of Defense (DoD).  DoD is extremely interested in 

long-range seasonal forecasts of severe weather for asset protection, mission planning, 

and worldwide operations.  The goal of this research was to create a predictive algorithm 

for locations in the southeastern and south-central portion of the United States in support 

of the Air Force Combat Climatology Center (AFCCC) to use in predicting the intensity 

of the spring and summer severe weather seasons.   

The most significant predictor of the intensity of the severe weather season in the 

southeast and south-central regions of the U.S. was identified as the proximity of the 

indices to the respective region.  Beginning with multiple linear regression, this study 

found there were relationships between several severe weather parameters, such as 

thunderstorm and heavy precipitation events, and these known global circulation and SST 

indices.  However, R2 values showed that SST indices had more significance with severe 

weather since they appeared more often in the multiple linear regression models.  In 

addition, analysis of variance provided valuable incite into the development of 

 ix
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classification and regression tree (CART) analysis.  After little predictive value was 

found using traditional statistics, CART analyses were developed to create an algorithm 

for DoD forecasters to use for seasonal severe weather prediction.  Results confirmed that 

algorithms with reasonable predictability can be produced for forecasting the intensity of 

the severe weather season. 
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DESIGNING AN ALGORITHM TO PREDICT THE INTENSITY 
 

OF THE SEVERE WEATHER SEASON 
 
 
 

I.  Introduction 
 

 

One of the greatest challenges in meteorology today is long-range forecasting.  

Weather-sensitive industries such as agriculture and energy use long-range climate 

forecasts to project future crop yields and the amount of natural gas or electricity required 

for a season.  The Department of Defense (DoD) is also extremely in need of these 

forecasts.  DoD is responsible for examining the influences of long-term weather 

phenomena on its operations by using future seasonal outlooks, especially for severe 

weather phenomena. 

  Operational commanders routinely task the Air Force Combat Climatology 

Center (AFCCC) to produce outlooks for the upcoming severe weather season so they 

can tailor their operations to meet any threat.  One possible use of such forecasts in the 

United States is the realignment of aircraft to optimize their training and operational 

effectiveness.   However, at the present time, AFCCC does not have the capability to 

produce such outlooks.  The goal of this research therefore, is to develop a predictive 

algorithm for the southeastern and south-central portion of the United States in support of 

AFCCC to use in forecasting the intensity of the spring and summer severe weather 

seasons. 
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1.1 Statement of the Problem 

 

Sea-surface temperatures (SSTs) are superb indicators that climatologists and 

weather sensitive groups use for long-range forecasts since they are known to control 

some of the interannual climate variability in all regions of the globe.  Since the oceans 

cover nearly 70 percent of the Earth’s surface, absorbing and reradiating enormous 

amounts of solar radiation, SST patterns driven by ocean currents greatly affect the 

character of weather patterns downstream, particularly across North America (Sanders, 

1985).  Interest in SSTs, such as in the Pacific Basin, the North Pacific, and the North 

Atlantic, has spread not only to scientists, but also to primary agricultural producers, 

brokerage firms, and the military.  Although it is difficult to explain every aspect of SSTs 

and their influences globally, relationships exist between them and with temperature, 

precipitation, and severe weather anomalies throughout the United States.  

 Another indictor scientists use are the global atmospheric circulation patterns.  

For example, one of the most influential known global atmospheric circulations is 

associated with the Pacific Basin and its associated El Nino/Southern Oscillation (ENSO) 

ocean/atmospheric phenomena.  El Nino, an oceanic component, is associated with the 

replacement of the cool upwelling Peruvian coastal current by warmer equatorial waters. 

The Southern Oscillation, an atmospheric component, is a fluctuation in the intertropical 

atmospheric circulation, most commonly known as the Walker Circulation.  The 

Southern Oscillation manifests itself as a quasi-periodic (2-4 year) variation in large-scale 

sea-level pressure, surface wind, and sea-surface temperature anomalies over a wide area 

of the Pacific Ocean basin (Glantz, 1991).  
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This research focuses on such oscillations in global SSTs and atmospheric 

circulation patterns and their effects on the spring and summer severe weather seasons in 

the southeastern and south-central portions of the United States.  Using standard 

statistical methods of regression and classification trees, this study creates a 

climatological algorithm for forecasting months ahead, the degree of severity of the 

spring and summer severe weather seasons for DoD installations within the area of 

interest.  

 
 
 
1.2 Research Objectives 
 
 

Seasonal forecasts produced using multiple forms of regression and classification 

tree techniques are at the cutting edge of current weather prediction technology.  The goal 

of this study is to attempt to create a climatological algorithm for use in producing long-

range forecasts.   This study examines spring and summer severe weather parameters and 

compares them to SST records and known global circulations from the previous winter 

season to produce the climatological algorithm, since relationships are found, which are 

statistically significant.       

 

The specific objectives necessary to achieve the goal of this study were to: 

1. define the SST indices, global circulation indices, and severe weather 

parameters pertinent to the study; 

2. identify the regions of interest and examine six stations for an accurate and 

representative coverage of each region; 

 3
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3. collect precipitation data from these individual stations.  Heavy precipitation 

was chosen to define severe weather since this data set is most abundant and 

readily available;   

4. gather lightning data within 50 nautical miles of each station.  This radius was 

specifically chosen since weather warnings/watches are issued within it, and 

previous research has found this radius to be most representative of lightning 

in the surrounding area of a location; 

5. examine tornado data within a 50 nautical mile radius of each station;   

6. collect thunderstorm data from each of the six chosen stations; 

7. compare the lightning, precipitation, tornado, and thunderstorm data from 

each station to the global SST indices and the circulation indices using 

traditional statistical methods of regression;  

8. use classification tree techniques to introduce new predictive techniques by 

combining SSTs and global circulations and explore any relationships worthy 

of prediction; 

9. identify relationships between February and winter indices, regional trends, 

and prominent global circulation/SST patterns; 

10. after detecting if any statistical relationships exist, produce a climatological 

algorithm for forecasting the intensity of the spring and summer severe 

weather seasons.   
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II. Literature Review 

 

2.1 Background on Global Atmospheric Circulations and SSTs Influences  

 

 Circulations and currents within the atmosphere and the ocean transport energy 

from one part of the globe to another.  Strong winds force the flow of the surface waters, 

which results in an upwelling of deep water in certain regions of ocean basins.  The 

combination between this upward convergence cooling surface SSTs and solar heating 

warming SSTs results in gradients along the ocean surface (Trenberth, 1991).  

Consequently, the oscillation between the cooling and warming SSTs induces 

increasing/decreasing pressure gradients over the ocean surface.  This change in pressure 

enhances global circulations and the strength of upper atmospheric winds illustrating the 

strong interaction between the oceans and the atmosphere (Trenberth, 1991). 

 Predicting the interaction between the oceans and the atmosphere has been a 

major challenge for all scientists, however, it has been discerned that global circulations 

and SSTs play a major role on weather and climate of the world (Gatenbein, 1995).  To 

better understand global circulations, two approaches have been used to obtain temporal 

correlations:  the teleconnection method and the rotated principle component analysis 

(RPCA).  The teleconnection method uses meteorological parameters between one 

geographical location and correlates them with other point locations in its domain 

(Barnston, 1987).  A teleconnection usually includes two to four centers of action, with 

the strength of the correlation used to determine whether or not the global circulation is 

peaking or is of significant strength. 

 5
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 The RPCA uses entire flow field values in a specific region of meteorological 

parameters to determine where the centers of action are, instead of pre-assigning centers 

of action like the teleconnection method.  This process takes full advantage of large-scale 

global circulation patterns to produce robust solutions.  There are several reasons why 

RPCA has not been fully used as the primary approach for analysis.  Teleconnections are 

simpler to compute and less removed from the original data, and understanding all 

aspects of RPCA is difficult because of its interpretability (i.e., what they actually mean 

physically).  However, both methods are analyzed to create indices across the globe.             

 

2.2 The Southern Oscillation Teleconnection Index 

 

 One of the most conspicuous of many teleconnections in the world influencing 

weather and climate is the Southern Oscillation (SO).  The evolution of the SO and its 

corresponding anomalies in pressure have been studied and well documented over the 

years.  The SO refers to the seesaw pattern of atmospheric pressure differences across the 

tropical Pacific over some time period (Figure 1).  An inverse relationship between air 

pressure in the western Pacific at Darwin, Australia and the south-central Pacific at Tahiti 

influences major climatic changes across the globe.  Interest in the SO increased after 

1983, when the 1982-83 ENSO event disrupted global weather patterns making scientists 

pay closer attention to its corresponding indices (Wagner, 1985).  The Southern 

Oscillation Index (SOI) has been linked to great temperature extremes, flooding, and 

severe weather and it serves as an efficient predictor for North American weather patterns 

 6
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(Ting, 1997).  The SO index equation that is used by the U.S. Climate Prediction Center 

(CPC) is defined as: 

SOI

Actual_Tahiti_SLP Mean_Tahiti_SLP−
Standard_Deviation_Tahiti

Actual_Darwin_SLP Mean_Darwin_SLP−
Standard_Deviation_Darwin

−

Monthly_Standard_Deviation             (1) 

 

Figure 1. Seesaw pattern of the SOI with a strong, negative phase during the 1982-83                
event disrupting global patterns everywhere (Daly, 2001). 

 

2.3 RPCA Indices 

 

 The technique for determining other prominent global circulations is RPCA.  In 

this analysis, patterns are determined each month by using specific height anomalies for 

the three-month period centered on the month.  RPCA produces robust indices since it is 

based on an entire flow field, and not just from height anomalies at specific locations. 

 The most prominent RPCA global circulation found in all months is the North 

Atlantic Oscillation (NAO).  The NAO correlates part of a strong center over Greenland 

 7
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with an opposite field over the Atlantic, Europe, or the United States (Figure 2).  

Research has shown that positive phases of the NAO result in above normal temperatures 

in the eastern United States and northern Europe, while negative phases produce opposite 

results.  In addition, strong positive phases induce below-normal precipitation over 

southern Europe.  During the mid-1950’s though the late 70’s, the wintertime NAO 

showed almost complete domination of the negative phase, and then, a transition to the 

positive phase until the mid 90’s.  Thus, the NAO is strongly recognized in winter studies 

(Hurrell, 1995).   

 

_ + _ +  

_ + _ +

Figure 2.  Phases of the NAO with scale of correlation values between the average                         
      700 mb height at a grid point and the RPCA value (U.S. CPC, 2001). 
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   Another prominent global circulation in the Northern Hemisphere is the 

Pacific/North American (PNA) pattern (Figure 3).  The PNA has four strong centers of 

height anomalies, with two sets of similar signs.  The first set is the Aleutian Island 

height anomaly and the southeastern United States height anomaly.  The second set’s 

center is located in the vicinity of Hawaii and near the United States-Canadian border 

between the Pacific Ocean and Rocky Mountains.  Research has shown that the PNA 

index has encouraging correlations with precipitation.  Thus, the PNA pattern is 

important in the climatic variability in many regions, especially during the winter months 

when the pattern is a major mode of atmospheric variability (Leathers, 1991).     

 

+ 

_ + _ _ + 
_ + 

_

+ _

Figure 3.   Phases of the PNA with scale of correlation values between the average                         
      700 mb height at a grid point and the RPCA value (U.S. CPC, 2001).  
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 The West Pacific Oscillation (WP) is a global circulation over the North Pacific 

and appears in all months.  During the winter, the pattern orients in a north-south pattern 

with one center located over the Kamchatka peninsula and another of the opposite sign 

located in portions of southeastern Asia (Figure 4).  In the summer, the WP introduces a 

third prominent center over Alaska and the Beaufort Sea (Barnston, 1987).  The WP 

moves progressively westward from summer through winter and vice-versa from winter 

through summer.  Due to the wave-like pattern, strong positive or negative phases 

enhance zonal variations in the location and intensity of the Pacific jet stream, thus 

becoming a major pattern during the winter (Wallace, 1981).   

 

+ +

_ _ 
_ 

+ 

_ ++ 

Figure 4.   Phases of the WP with scale of correlation values between the average                         
      700 mb height at a grid point and the RPCA value (U.S. CPC, 2001). 
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Another RPCA global circulation pattern examined is the East Pacific (EP) 

pattern.  A center near Alaska and the west coast of Canada and an opposite sign near 

Hawaii define it (Figure 5).  During positive phases, a deep trough settles over western 

North America with a pronounced northeastern expansion of the Pacific jet stream.  In 

addition, the subtropical jet stream is generally stronger during this phase and creates 

above-normal precipitation over the central United States, which brought floods to the 

Midwest in the summer of 1993.  On the other hand, strong negative phases of the EP 

pattern reduce the intensity through split flow of the jet, creating blocking patterns further 

east over the Rockies (Barnston, 1987).  

 

_
_ 

+ + _ 
_ 

 

+ + 

Figure 5.   Phases of the EP with scale of correlation values between the average                         
      700 mb height at a grid point and the RPCA value (U.S. CPC, 2001). 
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 The Tropical/Northern Hemisphere (TNH) pattern also strongly influences the 

polar jet stream and its features are shifted east to be out of phase with the PNA.  It has a 

center just off the Pacific Northwest coast of the United States with a center of the same 

sign near Cuba (Figure 6).  Another center with an opposite sign is located just south of 

the Hudson Bay (Barnston, 1987).  Research has shown that in the winter, when the TNH 

pattern is in the negative phase, the Pacific jet stream intensifies and its location is shifted 

well southward into central California (Barnston, 1991).  Thus, this global circulation 

regulates and transports the flow of warmer, marine air and colder, continental air into the 

United States. 

 

 

+ 

_ 

+ 

Figure 6.   Phases of the TNH with scale of correlation values between the average                         
      700 mb height at a grid point and the RPCA value (U.S. CPC, 2001). 
 

 Other well known RPCA indices include the North Pacific pattern (NP), the East 

Atlantic Jet Pattern (EA-JET), and the Asia Summer pattern (ASU).  However, their 

 12
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significance in the winter months is minimal and will not be introduced since this 

research is focusing on winter indices used to identify trends with spring and summer 

severe weather. 

 

2.4 SST Indices 

 

 The global circulations that moderate the atmospheric winds link the components 

of the atmosphere and ocean.  Above-normal precipitation over the United States is often 

associated with excessive moisture transport from the ocean and its associated frequent 

storm activities passing over the United States.  It has been suggested that the primary 

cause of drought is the change in the atmospheric circulation across North America by 

changes in SSTs (Trenberth, 1992).  SSTs all over the globe are analyzed, and indices are 

created based on actual SSTs and their respective anomalies.  For example, the linkage 

between Pacific SSTs and United States precipitation was shown to influence the central 

and eastern United States through the change of atmospheric circulations leading to 

strong changes in moisture transport (Ting, 1997).  Warm SST anomalies in the tropical 

Pacific have been associated with a decrease in precipitation in North Carolina while cold 

SST anomalies have shown the opposite results (Roswintiarti, 1998).  SSTs have a huge 

impact globally since the Northern Hemispheric jet streams extract significant amounts of 

moisture from all oceanic basins.  One could ask if this increase or decrease in moisture 

result in an increase or decrease in severe weather from regimes across the globe, or if 

there is a balancing effect with the amount of wind shear these jets produce?  

 13
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Considerable amounts of upper-level wind shear in any thunderstorm event might 

eventually spell destruction of the storm system itself. 

 

2.5 Severe Weather Parameters  

 

Both global circulations and SSTs have a large but unknown effect on severe 

weather.  The primary variable controlling the enhancement in thunderstorm activity is 

the position and strength of the jet streams.  The increase in southeastern United States 

thunderstorm activity during the 1997-98 season is directly attributable to the stronger 

than normal upper-level polar jet stream across the region.  Increased baroclinicity 

associated with the enhanced jet produced a 100-200 percent increase in lightning flashes 

and lightning days along the Gulf Coast (Goodman, 2000).  This increase in the strength 

of the jet resulted from changing conditions in the Pacific SSTs.  However, the 

underlying feature is that SSTs and global circulations are not directly responsible for the 

formation of individual thunderstorms, but rather, they are directly related to synoptic 

flow patterns (Rhome, 2000).  In spring 1984, following a strong negative phase of the 

SO, the United States experienced severe intense storm systems that produced 

devastating tornadoes.  Impacts such as major tornado outbreaks that stretched from 

Oklahoma to Minnesota and eastward from northern Illinois to Lake Michigan induced 

F3 and F4 intensities that struck at night causing high casualties and heavy damage.  No 

place on earth is more visited by these storms than the United States.  Meteorologists are 

constantly searching for improved long-range severe weather forecasting techniques.  
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Their hope is to reduce weather-induced loss of life and property by investigating the 

interactions between the earth’s oceans and atmosphere.   

 

 15



www.manaraa.com

III.  Data 

 

The primary objective of this study was to find predictive relationships between 

global atmospheric circulation and SST indices with certain parameters indicative of the 

severe weather season in two regions of the United States.  In addition, after any 

predictive relationships are identified, this study created algorithms for forecasters to use 

based on any strong relationships found.  A strong relationship is likely related to 

regional effects that control the occurrence of severe storms as well as favorable 

conditions for upper-level forcing mechanisms. 

 

3.1 Regions of Study 

 

 Recently, Air Force Weather (AFW) reorganized into regional forecast Hubs 

across the United States known as operational weather squadrons (OWSs).  These OWSs 

provide meteorological products to aid in the protection of Air Force resources in all 

military installations in their respective coverage region.  This study encompasses two of 

the four continental Hubs; specifically, the 28th OSW at Shaw AFB and the 26th OWS at 

Barksdale AFB.  Their coverage includes the southeastern and the south-central portion 

of the United States.  Within each OWS area of responsibility (AOR), three bases were 

chosen for a comprehensive representation of the coverage area (Figure 7).   

The southeastern stations chosen were: 

1.  Shaw AFB, South Carolina 

2.  Warner-Robins AFB, Georgia 
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3.  Pope AFB, North Carolina.   

The south-central stations chosen were: 

1.  Barksdale AFB, Louisiana 

2.  Tinker AFB, Oklahoma 

3.    Randolph AFB, Texas.  
 

 

 

 

 

 

 

 

 

 

 
O  Pope AFB 

O  Warner Robins AFB 
O  Shaw AFB  

O  Randolph AFB

 O Barksdale AFB 

O  Tinker AFB 

Scott Hub

Shaw 

Barksdale Hub* 

Davis-Monthan 

 

Figure 7.  The four Air Force Weather Hubs along with the six stations used in this study  

     (*only two Hubs used in this study). 

 

3.2 Predictors:  Teleconnection Index and RPCA Indices 

 

 The predictor data in this study are broken up into two sets of variables.   The first 

set is the teleconnection and RPCA indices, which were obtained from the CPC.  For all 

indices except the TNH index, three consecutive monthly values, December through 
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February were averaged to create a single, winter value.  In addition, just the February 

indices were examined since the averaging of the indices might factor out any trends near 

the end of the winter season that might prove crucial in finding correlations with the 

spring and summer severe weather seasons.  As there were no February data for the TNH 

index, the TNH index will not be used in the February only comparisons, therefore, the 

averaging procedure was applied to the two months of December and January to create 

the TNH pattern’s winter index.  Winter values were chosen since these indices are 

highly significant during the winter season and the goal is to predict the spring and 

summer severe weather seasons based off of these highly significant winter indices.  

The indices that were examined are the: 

1.  Southern Oscillation (SO)  

2.  North Atlantic Oscillation (NAO) 

3.  Pacific/North American Pattern (PNA) 

4.  West Pacific Pattern (WP) 

5.  East Pacific Pattern (EP) 

6.  Tropical/Northern Hemisphere Pattern (TNH). 

The winter values were examined for each year of the fifty-year period of record 

(POR), 1951-2000, and compared with the spring and summer severe weather 

parameters.  The fifty-year POR was chosen since such a large data set will stabilize 

patterns and best identify trends that exist.  In addition, data on these indices were readily 

available from CPC.  This is invaluable in any predictive study since the data for any 

forecast tool developed must be readily available to users.  If not, such a tool is only 

valuable to the researcher themselves. 
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3.3 Predictors:  SST indices 

 

 The second set of predictor data includes the SST indices that were also collected 

from the CPC.  Specifically, the SST indices (Figure 8) that this study examined were 

the: 

1.  North Atlantic (NATL):  5-20° North, 60-30° West 

2.  Global Tropics (TROP):  10° South - 10° North, 0-360° 

3.  Nino 3.4 (NINO):  5° North-5° South, 170-120° West 

4.  West Coast of United States (WESTUS):  Along ship track #1. 

 

 

 

Nino 3.4 
Ship Track 1 

 North Atlantic  

Global Tropics 

Nino 3.4 

Figure 8.  The four SST basins used in this study. 
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The indices were examined from December through February and averaged over the 

period to create single, winter values as well as using the February data by themselves.  

These indices were not anomalies to SSTs, however, since they were the actual mean of 

the SSTs within their respective ocean basins.  Anomalies were not chosen over the 

actual SST data since this research examined only the winter season of SSTs, therefore 

using anomalies to factor out the seasonal effects is not necessary.  In addition, the winter 

values were examined each year of the 50-year POR, 1951-2000, and were also 

compared with the spring and summer severe weather season parameters. 

 

3.4 Predictands:  Severe Weather Parameters 

 

 The data sets predicted are the severe weather parameters.  Each severe local 

storm season, defined as March though May for spring and June through August for 

summer, is described by specific parameters.  Any of the following parameters were used 

to illustrate severe weather events:   

1. Lightning data within 50 nautical miles 

2. Precipitation data greater or equal to 0.50 inches 

3. Tornado data within 50 nautical miles 

4. Thunderstorm observational data 

Lightning data were collected from AFCCC and are analyzed over an 11-year 

POR, 1990-2000, since accurate coverage was first available at the beginning of the 

1990s.  The number of lightning days per month was summed for spring and summer to 
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create single, cumulative values for each season indicative of the total lightning activity 

within that season.  

 Precipitation data were calculated from AFCCC and examined over the entire 50-

year POR, 1951-2000.  The number of days with precipitation greater or equal to 0.50 

inches was also summed for the spring and summer seasons to create single, cumulative 

values for each season.  The value of 0.50 inches was chosen over 0.10 inches since this 

research was examining severe weather events, and while a 0.10 event may have severe 

weather associated with it, there would also be many events where the 0.10 threshold was 

met but severe weather had not occurred. 

  Tornado data were collected from AFCCC and examined over a 45-year POR, 

1951-1995.  The number of days with tornadoes within 50 nautical miles was also 

summed for spring and summer to equal a total number of days during the season.  

Tornado records before the 1980s is questionable, especially since older records relied 

primarily on observational data alone.  With this in mind, tornadoes might be missed at 

night and in rural areas; therefore, the data presented would represent the minimum 

number of tornado occurrences.  

 Finally, thunderstorm data were collected from AFCCC and examined over a 50- 

year POR, 1951-2000.  The number of days with thunderstorms was also summed during 

the spring and summer seasons to create a single value for each season.  Since 

thunderstorms typically can be heard from 12 nautical miles away, this presents a 

different data set than the lightning data, and one that has a longer POR that can be used 

for better regression results.  It was anticipated that a relationship exists with at least one 
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of the parameters, especially, since vast amounts of both predictors and predictand values 

were analyzed. 
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IV.  Results 
 
 
 
4.1 Traditional Statistics 
 
 
 

Regression analysis deals with examining relationships between two or more 

variables.  The simplest mathematical relationship between two variables is the linear 

relationship:    

                                                        y B o B 1 x⋅+ ε+                                                       (2) 

 

In this case, the predictand is the y-value and the predictor is the x-value (introduced in 

chapter 3).  Bo represents the y-intercept parameter while B1 represents the slope of the 

line parameter.  These parameters are determined by using the method of least squares fit.  

The method of least squares fit minimizes the sum of squared distances from each point 

to the line that best fits.  Since this study focuses on multiple predictors, global 

circulations and SSTs, multiple linear regression was used.  In multiple linear regression, 

the simple linear regression model is adjusted just by adding on the extra predictors.  The 

general additive multiple linear regression equation is: 

                                                 y B o B 1 x1⋅+ B 2 x2⋅+ ....+ B k xk⋅+ ε+                 (3) 

 

In this equation, k is the number of predictors used for each model.  For this study, k will 

be nine for the Feb indices (excluding TNH) and 10 for the winter indices.  Multiple 

linear regression also uses the method of least squares fit and is the method of choice to 

perform traditional statistics. 
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4.1.1 Methodology 

 

Before any regression can occur, 20% of the data should be excluded from any 

tests for uses of model verification.  If a valid model does exist, then the excluded data 

can be used to verify model accuracy.  Since this data uses sample sizes near 50 (number 

of years), 10 years have to be excluded for the optimal 20% verification.  The 10 years 

that were removed using a random number generator are:  1956, 1957, 1967, 1974, 1978, 

1982, 1987, 1990, 1997, and 2000.  In addition to excluding data, data sets need to be 

checked to determine whether they are continuous or discrete.  Since precipitation >0.50 

inches, thunderstorms, and lightning events are numerous during the spring and summer 

seasons in the southeastern and south-central United States, these data sets don’t have any 

problems with being a continual data set.   However, since tornadoes are not frequent, 

especially for most of the east coast, tornado data are discrete and will not be included in 

the standard regression process. 

 After data was excluded for verification purposes and checked for being 

continual, a regression model was created including all predictors into the equation.  For 

significance to occur in any model, the p-value must be lower than the standard alpha 

level of 0.05.  The p-value is the last number located in the Analysis of Variance 

(ANOVA) table under the F Ratio column.   A p-value less than 0.05 indicates that the 

model does fit better than simply the mean.  Individual predictor p-values can be checked 

in the parameter estimates table shown above under the Prob>t column.  For an even 

more efficient model, these individual p-values can be examined and excluded to increase 
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the significance of the model, and eventually the adjusted coefficient of determination 

(R2), similar to the process within stepwise regression. 

 Once significance of the model has been achieved, the coefficient of 

determination was checked to account for the total variation in the predictand (y-value) 

explained by all the predictors (x-values).  R2 values range from 0 to 1, and if there was 

no linear relationship between the predictand and predictors, R2 is 0 or very small.  If all 

observations fall on the best fit line, R2 is 1.  However, the estimate of R2 tends to be 

rather optimistic of the population, therefore adjusted R2 was used to more closely reflect 

how well the model fits the population and is usually more analyzed for models with 

more than one predictor. 

 When using regression analysis, problems such as multicollinearity occur.  

Sometimes in regression analysis, there was a close relationship between two or more 

predictors, which results in high errors for the parameter estimates.  When 

multicollinearity may be a problem within the model, the variance inflation factor (VIF) 

was checked.  Any predictors with multicollinearity problems have large variance 

inflation factors.  Severe VIFs include any value over 20.  If any severe instances occur, 

the correlation matrix between predictors will be analyzed to see how strong the 

relationship exists between the predictors.  The model will be reanalyzed and one of the 

predictors with a higher adjusted R2 and a lower individual p-value will be kept in the 

model, while the predictor with the lower adjusted R2 and a higher individual p-value will 

be discarded.  

 In addition to problems with multicollinearity, influential data points are also 

checked and removed to make a more efficient model.  With smaller samples such as the 
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lightning data set, influential data points occur often.    Since this problem was drastic 

and hard to overcome with such small sample sets, the lightning data was excluded for all 

regression processes.  With the larger sample sets, such as precipitation and 

thunderstorms, influential data points are not an issue. 

  

4.1.2 Analysis 

 

Once multicollinearity and influential data points are satisfied, the model was in 

its polished form.  Only coefficients of determination with significant, p-values <0.05 

found in the ANOVA table, are listed in Table 1 and Table 2 below, otherwise, no sig. 

appears.     

  

 

 

 
n

 S

Region Station Spring vs Feb Spring vs Winter Summer vs Feb Summer vs Winter
Shaw no sig no sig 0.107 no sig
Pope 0.175 no sig 0.276 0.271
Robins no sig o sig no sig no sig
Barksdale 0.089 0.087 0.297 0.193
Randolph 0.219 0.414 0.352 0.150
Tinker 0.234 0.189 0.104 no sig

Table 1. Adjusted R2 between spring/summer thunderstorm days & Feb/winter indices.

Southeast

outh-central

 

  

 Reg

 So

 

 

ion Station Spring vs Feb Spring vs Winter Summer vs Feb Summer vs Winter
Shaw 0.144 0.274 0.254 0.133
Pope 0.177 0.307 0.093 no sig
Robins 0.330 0.257 no sig no sig
Barksdale no sig 0.205 0.421 0.287
Randolph no sig 0.262 no sig no sig
Tinker no sig no sig 0.161 no sig

Table 2. Adjusted R2 between spring/summer precipitation days & Feb/winter indices.

utheast

South-central
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 Finding R2 between spring/summer severe weather parameters and Feb/winter 

indices was the key focus for multiple linear regression.  In addition, differences between 

the Feb and winter indices, southeast and south-central regions, and global circulations 

and SSTs were examined.  Overall, R2 values ranged from about 0.10-0.40, which are all 

rather weak correlations for uses in prediction, therefore no model was created to help 

with the final algorithm.  However, knowing that correlations do exist proves valuable 

uses in statistics and show that the indices do show some sign of relationship with 

precipitation >0.50 and thunderstorm events. 

 Another goal of this study was to determine whether averaging all the winter 

months into one value would show better correlations than just looking at the end of the 

season trend.  With averaging, the entire season was included into the process, although 

specific events, especially near the end of the season are not taken into full account.  The 

advantage of just looking at February indices would show how the atmosphere along with 

oceanic processes are changing to possibly identify trends and patterns with the 

upcoming spring and summer severe weather season.  After analyzing Table 1, equally 

weak correlations existed between spring vs. Feb indices and spring vs. winter, however, 

more correlations existed with Feb indices in the summer months than the winter indices.  

Looking at Table 2, equally weak correlations existed between spring vs. Feb and spring 

vs. winter, however, more correlations existed with winter indices in the spring than the 

Feb indices.  Factoring in both Table 1 and Table 2, there seems to be no apparent 

advantage of using Feb indices over an averaged winter index, since even though Feb 

indices proved to show more relationships with precipitation >0.50 data, winter indices 

showed more relationships with the thunderstorm data. 
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 The next goal of multiple regression was to identify if any regional trends existed.  

To accomplish this, a trend was identified if a global circulation or SST pattern was 

significant, p-value <0.10 (a more lenient p-value), in all three stations in their respective 

region.  The only regional trend that was identified was the spring precipitation vs. the 

winter indices model run.  Both the PNA and the NATL indices correlated with all three 

stations in the southeast, although the correlations were weak.  Since the PNA does have 

a center of action over the southeast and the NATL is close in proximity to the southeast 

region, the indices that were closer to the regions of interest did have more significance in 

the regression models. 

 Finally, the last goal considered during multiple linear regression was to 

determine whether global circulations of SST patterns appeared more frequently in the 

models.  Table 3 shows the number of occurrences that an index was significant, <0.10, 

in any model run.  The results show that the NATL appeared most frequent followed by 

NINO.  Nineteen signals were identified by NATL and NINO identified 15 signals, and 

overall, SSTs showed more relationship with severe weather than the global circulations. 

 

  

 

 S

 

  Total

Model SO NAO PNA WP EP TNH* NATL TROP NINO W US
Spring Thunderstorm 0 4 3 1 2 0 5 1 2 2
ummer Thunderstorm 1 1 3 2 4 1 4 4 6 3
Spring Precipitation 3 2 3 5 2 2 5 4 5 5

Summer Precipitation 2 4 3 1 3 1 5 2 2 2
6 11 12 9 11 4 19 11 15 12

*lower values for TNH since no winter model run

Table 3.  Number of occurrances that an index was significant (<.10) in Feb/winter
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 Overall, even though R2 values were weak (<0.50) for all model runs, statistical 

conclusions can be drawn from the analysis.  First, there was no apparent advantage of 

looking at February indices over winter indices, however, this process was used again for 

data mining and regression trees since the data are already formatted and deeper 

relationships could have been overlooked.  Second, the proximity of an index to the 

region will increase the significance and eventually the correlation of the model.  Both 

the PNA and the NATL had greater influence on the southeastern region than other 

indices.  Finally, multiple linear regression showed that SST indices appeared more often 

in the model runs than did global circulations.  Even though R2 remained low, the results 

above provided helpful information in the data mining and regression tree processes.  

Knowing what key indices to use for each model would aid in the tree building process 

and eventually into an algorithm usable by OWS forecasters.    

 

4.2 Classification and Regression Trees (CART) 

 

 CART analysis deals with complex relationships involving several predictands 

and predictors, and was used in this research when traditional statistics had been 

exhausted.  From the thunderstorm, precipitation, and tornado data sets, CART 

established classification trees that predicted a categorical predictand.  These 

classification trees consist of binary decision rules that split nodes (decision points) either 

to the left or right based on a test against a significant predictive value and will continue 

to branch until a terminal node (final node) was reached (Burrows, 1992).  CART 
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provided a way to examine data and discover important grouping cases to formulate rules 

and to make predictions.  The key elements of the CART analysis are: 

1. choosing the best splitting technique for the trees, 

2. designing the trees for the best predictive results, 

3. validating the tree through cross-validation techniques. 

 

4.2.1 Methodology 

 

CART works by choosing a split at each node so that each child node was more 

pure than its parent node.  In a completely pure node, all of the cases have the same value 

for the categorical, target variable.  CART defaults the measure of the split impurity 

using the Gini splitting rule.  Gini looks for the largest class in the database and strives to 

isolate it from other classes.  For example, if the minimum node number of cases was set 

to 5, nodes with total sample size of 4 or less will not split, however, nodes with total 

sample size of 5 or more will continue to split once the threshold value of 5 was met.  

After initial splitting in the tree was made, the process was repeated until the most pure 

terminal nodes are reached.  While this approach may seem short sighted since it attempts 

to separate classes by focusing on one class at a time, Gini performance is frequently so 

precise and is considered the best splitting rule. 

 The next key element of the CART analysis was designing a tree for the best 

predictive results.  The most pure terminal nodes in a tree will have 100% of the data 

formulated into one category, therefore if all the criteria were met to arrive at that 

terminal point in that specific tree, 100% of the time that specific category will be 
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predicted.  CART also provided a misclassification matrix to show risk estimates.  The 

risk estimate is the proportion of cases correctly classified that indicates the extent to 

which the tree makes accurate predictions.  If a tree was completely pure, the actual 

category would match up with the predicted category and the risk estimate would be zero.  

This might seem like the ideal tree, however it still does not provide any insight into 

validation of the tree.  Therefore, the 10-fold cross validation technique was used for 

validation.  The combination of a pure terminal node for 100% predictability and a low 

cross-validation risk estimate would provide for the best design of a tree. 

 The final key element of the CART analysis was validating the tree.  There are 

several methods of validation, however, the 10-fold cross-validation method was used in 

this study since it is an improvement over the traditional holdout method, where a certain 

percent is removed from the data, when dealing with a smaller sample size.  Since this 

study deals with sample sizes of 50 or less, removing data using the holdout method will 

only decrease the sample size more and a robust validation will not be achieved.  The 10-

fold cross validation is a method for estimating what the error rate of 10 sub-trees would 

be if there was test data.  The optimal tree, which was derived from the first two key 

elements, was tested using 10 subsets.  After the data were divided into 10 subsets, one of 

the 10 subsets was used as the test set and the other 9 subsets are put together to form the 

training set.  Then the average error across the 10 trials was computed.  The advantage of 

this method is it does not matter how the data gets divided, and that the variance of the 

resulting estimate is reduced as the number of folds is increased.  Evidence has been 

shown that using 10-20 folds gives better results than a smaller number. 
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 In this study, obtaining the most pure terminal nodes and the lowest cross-

validation risk estimate was done by rerunning several trees, each with different splitting 

thresholds.  Usually a splitting threshold of two would create trees without impurities, 

however, the cross-validation risk estimate could be higher.  When a splitting threshold 

of five was used, the tree would have impurities, however the cross-validation risk 

estimate could be lower.  Finding the perfect balance between the lower impurities and 

the lower cross-validation was the main challenge during the analysis. 

 

4.2.2 Analysis        

 

Before any classification trees could be created, the thunderstorm, precipitation,  

and tornado data sets had to be categorized to best solve the problem to this research.  

Just like the tradition statistics portion of the research, lightning data wasn’t used during 

the CART analysis due to the small size of the data set.  The goal was to answer how 

intense the severe weather season would be, and a classification into below normal, 

normal, and above normal categories was achieved through ranking the data into equal 

thirds.  However, since all data sets contained seasonal values, the data couldn’t be split 

exactly into equal thirds, although for the thunderstorm and precipitation data sets, the 

data was split close enough to fit into the below normal, normal, and above normal 

categories.  Tornado data proved more of a challenge.  Since the data wasn’t normally 

distributed, which was a problem during traditional statistics, not all the data could be 

split into equal thirds after ranking the data occurred, therefore, some of the tornado data 

was split into equal thirds, while other data sets were split 50%/25%/25%.  These splits 
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were determined to be the climatology of the data sets, which was shown in the result 

tables further in this research.  The goal of the classification trees would be to improve 

upon the climatology determined by the splits above. 

 After ranking and splitting the data into below normal, normal, and above normal 

categories, the classification trees were created (Appendix A).  The next step was to 

determine if the tree was the best tree for creating an algorithm for forecasters to use.  In 

order to determine if the best tree was created, several factors had to be determined: 

1. the purity of the tree, 

2. the sample size of the terminal nodes, 

3. the cross-validation risk estimate. 

All of these factors were used to reach the improvement over climatology, which 

only was shown in the results if it was better than 0%.  First, the purity of the tree was 

determined.  Only terminal nodes of 100% were used to obtain the highest improvement.  

Terminal nodes less than 100% were not chosen since the cross-validation risk estimate 

multiplied by any terminal node less than 100% would not result in any improvement 

above climatology. 

  Next, any terminal node sample size less than three would not be used since two 

years of data did not represent at least 5% of the thunderstorm and precipitation data sets.  

This same process was used for continuity in the tornado data sets.  

 Finally, obtaining the lowest cross-validation risk estimate was achieved by 

rerunning trees with different stopping rules explained in the CART methodology section 

of this research.  Subtracting the cross-validation risk estimate from 100% would result in 

the tree accuracy.  Once the tree accuracy was determined, the difference from 
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climatology was determined by subtracting the tree accuracy from the climatology.  

Then, the improvement over climatology would be that difference divided by the 

climatology.  Once all improvements were shown to be above 0%, the criteria were used 

as determined from the tree to provide a forecast algorithm to predict the intensity of each 

severe weather category.   

 

4.2.3 CART Results 

 

Result tables were broken up regionally to identify trends with the global 

circulation and SST indices.  Since the goal was to obtain the best forecast accuracies for 

the algorithm, February indices and winter indices were both used to create trees, 

however, only the best index was shown and is shown in the criteria with capitalized 

indices being the winter indices and lower-case indices being the February indices.  If the 

criterion were met for either the February or winter indices, a long-range forecast would 

provide for the intensity, either below normal, normal, or above normal, and a forecast 

accuracy for the algorithm.    

 Table 4 results show the southeast spring thunderstorm forecast algorithm.  The 

best forecast accuracies were for Pope AFB with 47% accuracies-a 42% improvement 

over climatology.  The best regional trend identified was the SO index, which was 

signaled in every station for use in predicting spring thunderstorms in the southeast 

region.  Both winter and February indices were used to provide the best forecast 

algorithm for southeast spring thunderstorms.    
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Table 4.  Southeast spring thunderstorm forecast algorithm.

Shaw
Average 42% / 33% / 27%

42% / 33% / 27%Above Average

natl<25.70 
nino<25.30
natl>25.70      

ep<0.75         
nino>26.40
natl<25.70 

25.30<nino<27.30 
ep<0.20           
so>-1.10

42% / 33% / 27%

Above Average

Below Average

Average 42% / 33% / 27%

natl<25.70 
25.3<nino<27.30    

ep>0.20           
wpo<-0.20

Average 47% / 33% / 42%
Pope

47% / 33% / 42%

so>-0.95           
0.50<ep<1.35

so<-0.95
so>-0.95           
ep<0.15           
nao>-.05           

natl<25.60

47% / 33% / 42%Below Average

Average

PNA<0.83         
SO<-0.70          
TNH<0.20         
NAO<0.85

43% / 33% / 30%

*winter indices are capitalized

Robins

43% / 33% / 30%

Below Average

 -0.42<PNA<0.83   
SO>-0.70 

TROP<27.41 
WESTUS>22.10 

WPO<.48

43% / 33% / 30%

PNA>0.83         
NAO>-0.10Below Average
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Table 5 results show the south-central spring thunderstorm forecast algorithm.  A 

46% tree accuracy was acknowledged for Randolph AFB-a 39% improvement over 

climatology.  Regional trends identified were the NATL, EP, and PNA indices.  They 

were all signaled for predicting spring thunderstorms in the south-central region.  Both 

winter and February indices were used to provide the best algorithm for south-central 

spring thunderstorms. 

Table 6 results show the southeast summer thunderstorm forecast algorithm.  Up 

to 45% tree accuracies were acknowledged for Shaw AFB-a 36% improvement over 

climatology.  No stations had the best predictive results for both summer and spring 

thunderstorms, and no regional trends were identified for predicting summer 

thunderstorms in the southeast region, however only winter indices were used to provide 

the best algorithm for southeast summer thunderstorms. 

Table 7 results show the south-central summer thunderstorm forecast algorithm.  

A 48% tree accuracy was acknowledged for Randolph AFB-a 45% improvement over 

climatology.  In addition, Randolph AFB continually had the best predictive results for 

both summer and spring thunderstorms. NAO was the only signal identified in all stations 

in the south-central region for predicting summer thunderstorms. Both February and 

winter indices were used to provide the best algorithm for south-central spring 

thunderstorms. 
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Average

NATL<26.40       
NAO>-0.36        
PNA>-0.07        
WPO<-0.25        
TNH<0.95

43% / 33% / 30%

Above Average
NATL<26.40       
NAO>0.71         

-0.55<PNA<-0.07
43% / 33% /30%

Above Average

NATL<26.40       
NAO>-0.36        
PNA>-0.07        

-0.25<WPO<0.95

43% / 33% / 30%

Average

EP>-0.50          
NATL<25.90       

PNA<0.07         
NAO>0.04

46% / 33% / 39%

Above Average
EP<-0.50          

NATL<26.00 46% / 33% / 39%

43% / 33% / 30%

43% / 33% / 30%

Below Average
NATL<26.40 

0.01<NAO<0.71    
-0.72<PNA<0.07

43% / 33% / 30%

Table 5.  South-central spring thunderstorm forecast algorithm.

Barksdale

Below Average NATL>26.40 
EP<0.83

Average
NATL<26.40 
NAO<-0.36 

TROP>27.50

Randolph

Below Average

EP>-0.50          
NATL>25.90       

SO>-0.70          
NAO<1.25

46% / 33% / 39%

Average

EP>-0.50          
NATL>25.90       

SO<-0.70          
WESTUS<23.30

46% / 33% / 39%

Tinker

Below Average
pna>-1.15          
natl>25.90         
wpo>-0.10

43% / 33% / 30%

Average
pna>-1.15          
natl>25.50         
wpo<-0.10

43% / 33% / 30%

Above Average

pna>-1.15          
natl<25.50         
ep<-0.15           

westus<25.80

43% / 33% / 30%

*winter indices are capitalized
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Robins

Below Average
EP<-0.32          

TROP<27.70       
SO<0.73

39% / 33% / 18%

Average
EP>-0.19          

NAO>0.09         
SO>-0.24

39% / 33% / 18%

Pope Average

25.7<NATL<26.30  
-0.29<PNA<0.72    

NAO>-0.48        
WPO<0.46 

37% / 33% / 12%

Average
WPO>0.39         
PNA>0.48         
SO>3.15

45% / 33% / 36%

Above Average
WPO<0.39         

TROP>27.50       
TNH>0.05

45% / 33% / 36%

45% / 33% / 36%

Average
WPO<0.39         

27.4<TROP<27.5   
EP<0.46

45% / 33% / 36%

*winter indices are capitalized

Table 6.  Southeast summer thunderstorm forecast algorithm.

Shaw

Below Average
WPO<0.39         

TROP<27.41       
TNH>0.30         
NAO<1.13
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Average

trop<27.60         
nino<26.60        

ep>-0.95          
nao<-0.20         
so<1.30

48% / 33% / 45%

Average

trop<28.10         
nino>26.60        
nao<-0.05         
so<-1.05

48% / 33% / 45%

Above Average

trop<27.60         
25.2<nino<26.2     

ep>-0.95          
nao>-0.20

48% / 33% / 45%

Above Average
27.6<trop<28.10    

nino<26.60        
ep<1.35

48% / 33% / 45%

Above Average trop>28.10 48% / 33% / 45%

Below Average

PNA<1.02         
WESTUS<22.90    

NAO<0.02         
EP<-0.15          

TNH>-0.04

44% / 33% / 33%

Below Average

PNA<1.02         
WESTUS>23.30    

NINO>26.60       
SO>-1.10          

WPO<0.65

44% / 33% / 33%

Average

PNA<1.02         
22<WESTUS<23   

NINO>26.60       
SO>-1.10

44% / 33% / 33%

Above Average

PNA<0.56         
WESTUS>22.90    

NINO>26.60       
SO<-1.10

44% / 33% / 33%

Barksdale 42% / 33% / 27%
-0.75<wpo<-0.50   

natl<25.80Below Average

42% / 33% / 27%
wpo>-0.75         
natl>25.80         
nao<0.55

Below Average

Below Average PNA>1.02 44% / 33% / 33%

Below Average
PNA<1.02         

WESTUS<22.90    
NAO>0.02

44% / 33% / 33%

42% / 33% / 27%

Randolph

Below Average

trop<28.10         
nino>26.60         
nao<-0.05          

-1.05<so<0.25

48% / 33% / 45%

Below Average

trop<28.10         
nino>26.60         
nao>-0.05          
wpo>-0.95         

westus<25.70

48% / 33% / 45%

Tinker

Table 7.  South-central summer thunderstorm forecast algorithm.

Above Average wpo<-0.75         
natl<25.40

*winter indices are capitalized
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Table 8 results show the southeast spring precipitation forecast algorithm.  A 57% 

tree accuracy was acknowledged for Robins AFB-a 73% improvement over climatology.  

The EP and SO were the only signals identified in all stations in the southeast region for 

predicting spring precipitation >0.50. Both February and winter indices were used to 

provide the best algorithm for southeast spring precipitation >0.50. 

Table 9 results show the south-central spring precipitation forecast algorithm.  A 

44% tree accuracy was acknowledged for both Barksdale and Randolph AFB-a 33% 

improvement over climatology.  The EP and NAO were the two signals identified in all 

stations in the south-central region for predicting spring precipitation >0.50. Only winter 

indices were used to provide the best algorithm for south-central spring precipitation 

>0.50. 

Table 10 results show the southeast summer precipitation forecast algorithm.  A 

47% tree accuracy was acknowledged for Robins AFB-a 42% improvement over 

climatology.  In addition, Robins AFB continually had the best predictive results for both 

summer and spring precipitation >0.50.  The WESTUS was the only signal identified in 

all stations in the southeast region for predicting summer precipitation >0.50.   

Table 11 results show the south-central precipitation forecast algorithm.  A 45% 

tree accuracy was acknowledged for Barksdale AFB-a 36% improvement over 

climatology.  In addition, Barksdale AFB continually had the best predictive results for 

both summer and spring precipitation >0.50.  The EP was the only signal identified in all 

stations in the south-central region for predicting summer precipitation >0.50.  Both 

February and winter indices were used to provide the best algorithm. 
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Below Average
 -0.35<PNA<-0.07   

EP>0.27           
TROP>27.10

40% / 33% / 21%

Average
PNA>-0.07        

EP>0.27 40% / 33% / 21%

Average
PNA<-0.35        

SO>0.39          
NAO>-0.62

40% / 33% / 21%

Above Average
PNA<-0.35        

SO<0.39          
WPO<1.06

40% / 33% / 21%

Average

EP>-0.73          
SO<1.06          

NATL<25.97       
NAO<0.79

42% / 33% / 27%

Average

 -0.73<EP<0.12     
SO>-0.14          

NINO<26.40       
WESTUS>21.90

42% / 33% / 27%

Average

EP>0.12           
SO>0.29          

24.9<NINO<26.4   
WESTUS>21.88    

TNH>-0.20

42% / 33% / 27%

Above Average
EP<-0.73          

NAO<0.75 42% / 33% / 27%

Above Average
EP>-0.73          
SO<-1.06          

NATL>25.97
42% / 33% / 27%

Average

wpo>-1.05         
-0.55<pna<1.10     

trop<27.93         
nao<1.55          
ep<1.35

57% / 33% / 73%

Above Average

wpo>-1.05         
pna<-0.55         
trop<27.72         

so<1.35

57% / 33% / 73%

Robins

Below Average wpo<-1.05         
ep<1.05 57% / 33% / 73%

Table 8.  Southeast spring precipitation >0.50 forecast algorithm.

Shaw

Below Average EP<0.27           
TROP<27.50

40% / 33% / 21%

Below Average
EP<0.10           

TROP>27.50       
TNH<0.75         

WPO>-0.27

40% / 33% / 21%

Pope

Below Average
EP>-0.73          

-1.06<SO<-0.14     
NINO<26.40

42% / 33% / 27%

Average
EP>-0.73          
SO>-1.06          

NINO26.40
42% / 33% / 27%

*winter indices are capitalized
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Average
EP<-0.50          
PNA>0.39 44% / 33% / 33%

Average

EP>-0.50          
WESTUS<23.10    

NAO<1.22         
TROP<27.65       
NATL>25.60       
WPO>-1.33

44% / 33% / 33%

Above Average
EP<-0.50          
PNA<0.39         
NAO>-1.15

44% / 33% / 33%

Average
 -0.50<EP<0.07     
NATL<26.30 44% / 33% / 33%

Average
EP>0.07           

NATL<25.81       
PNA<-0.19

44% / 33% / 33%

Above Average
 -0.93<EP<-0.50    

NAO<0.89 44% / 33% / 33%

Above Average

EP>0.07           
NATL<25.80       
PNA>-0.19        
NAO<0.61

44% / 33% / 33%

Average

WESTUS>23.05    
NAO<0.79         
TNH>-1.22        
WPO>-0.22

42% / 33% / 27%

Above Average
22.5<WESTUS<23  

NAO>-0.44 42% / 33% / 27%

Tinker

Below Average WESTUS<23.05    
NAO<-0.44 42% / 33% / 27%

Average WESTUS<22.48    
EP>0.61 42% / 33% / 27%

Randolph

Below Average  -0.50<EP<0.17     
NATL>26.30

44% / 33% / 33%

Below Average

0.06<EP<1.15      
25.8<NATL<26.3   

NAO<0.96         
PNA>-1.08

44% / 33% / 33%

Barksdale

Below Average

EP>-0.22          
WESTUS>23.30    

NAO<0.53         
NATL<26.49

44% / 33% / 33%

Average
EP>-0.50          

WESTUS>23.16    
0.53<NAO<0.96

44% / 33% / 33%

Table 9.  South-central spring precipitation >0.50 forecast algorithm.

*winter indices are capitalized
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Above Average

natl<25.75         
westus>24.45       

-1.10<pna<0.75     
nao<-0.05         
so>-1.30

45% / 33% / 36%

Average

-1.06<PNA<0.80   
TROP<27.70       

0.19<SO<1.62      
EP>-0.53          

NINO>24.86

37% / 33% / 12%

Average
natl<25.43         

westus>24.65       
-0.70<nao<0.50

47% / 33% / 42%

Above Average

natl<25.43         
westus<24.65       
nino>25.24        
pna>-1.35

47% / 33% / 42%

Robins

Below Average

25.4<natl<25.9     
ep<-0.25           
nao>-1.45          
wpo>-1.00

47% / 33% / 42%

Average
natl>25.43         
ep>-0.25           
so<0.60

47% / 33% / 42%

Pope

Below Average

PNA>-1.06        
TROP<27.70       

SO<0.19           
NINO<27.13       
WPO>-0.32

37% / 33% / 12%

Average

PNA>-1.06        
TROP>27.70       

SO>-3.15          
WESTUS<24.47

37% / 33% / 12%

Table 10.  Southeast summer precipitation>0.50 forecast algorithm.

Shaw

Below Average natl>25.75         
trop<27.95

45% / 33% / 36%

Average
natl<25.75         

westus<24.45       
nao>-0.30

45% / 33% / 36%

*winter indices are capitalized
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Station Category Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Above Average

nao>0.05          
natl>25.34         

-0.60<ep<0.15      
so>-1.25

45% / 33% / 36%

Above Average
0.05<nao<0.80     

natl<25.34 45% / 33% / 36%

Average

SO>-1.32          
WPO<0.19        

25.8<NATL<26.0   
PNA<0.72

43% / 33% / 30%

Above Average
SO<-1.32          

WPO<0.85 43% / 33% / 30%

Tinker Below Average

PNA<0.75         
WESTUS>21.98    

WPO>-0.35        
-0.25<NAO<0.99   

NATL>25.86       
EP<1.12

42% / 33% / 27%

*winter indices are capitalized

Randolph

Below Average

SO>-1.32          
WPO<0.19         

26.0<NATL<26.7   
PNA<0.83         
EP>-0.60

43% / 33% / 30%

Average SO>-1.32          
0.19<WPO<0.55 43% / 33% / 30%

Table 11.  South-central summer precipitation >0.50 forecast algorithm.

Barksdale

Below Average
nao>-0.05          
natl>25.34         

0.15<ep<1.80
45% / 33% / 36%

Average
 -1.25<nao<-0.05    

natl<25.72         
trop<27.75

45% / 33% / 36%
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Table 12 results show the southeast spring tornado forecast algorithm.  A 49% 

forecast accuracy was acknowledged for Robins AFB-a 96% improvement over 

climatology.  The NAO and PNA were the only signals identified in all stations in the 

southeast region for predicting spring tornadoes. Both February and winter indices were 

used to provide the best algorithm for southeast spring tornadoes. 

Table 13 results show the south-central spring tornado forecast algorithm.  A 47% 

forecast accuracy was acknowledged for Barksdale AFB-a 42% improvement over 

climatology.  The SO was the only signal identified in all stations in the south-central 

region for predicting spring tornadoes. Only winter indices were used to provide the best 

algorithm for south-central spring tornadoes. 

Table 14 results show the southeast summer tornado forecast algorithm.  A 47% 

forecast accuracy was acknowledged for Pope AFB-a 42% improvement over 

climatology.    The WPO, EP, and NAO were the signals identified in all stations in the 

southeast region for predicting summer tornadoes.  Only winter indices were used to 

provide the best algorithm for southeast summer tornadoes. 

Table 15 results show the south-central tornado forecast algorithm.  A 58% 

forecast accuracy was acknowledged for Randolph AFB-a 132% improvement over 

climatology was noted.    The TROP was the only signal identified in all stations in the 

south-central region for predicting summer tornadoes.  Both February and winter indices 

were used to provide the best algorithm for south-central summer tornadoes. 
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Station
Category            

(# of tornadoes) Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Above Average(>1)
NAO>-0.02        

WESTUS<22.95    
SO>-0.25

45% / 33% / 36%

Below Average (0)
PNA>-0.46        
TNH<-0.55        

NATL>26.37
44% / 33% / 33%

Average (1)
 -0.46<PNA<0.85   

TNH<-0.55        
NATL<26.37

44% / 33% / 33%

Average (1)
PNA<-0.46        
WPO>-0.70        
TNH<1.20

44% / 33% / 33%

Above Average (>1)

PNA>-0.46        
TNH>-0.55        

WESTUS>23.13    
EP<0.25           

44% / 33% / 33%

Above Average (>1)
PNA<-0.46        
WPO<-0.70        
NAO<0.38

44% / 33% / 33%

Below Average (0)
25.13<natl<23.36   

nao<-0.30         49% / 25% / 96%

Above Average (>2)
25.13<natl<25.36   

nao>-0.30         
wpo<-0.50

49% / 25% / 96%

Table 12.  Southeast spring tornado forecast algorithm.

Shaw

Average (1)
NAO<-0.02        
PNA>-0.90        

TROP<27.74
45% / 33% / 36%

Pope

Below Average (0)

PNA>-0.46        
TNH>-0.55        

WESTUS<23.13    
TROP>26.81       
NAO<0.82         

NATL<25.60

44% / 33% / 33%

Below Average (0)

PNA>0.85         
TNH<-0.55        

NATL<26.37       
WPO<0.95

44% / 33% / 33%

*winter indices are capitalized

Robins
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Station
Category            

(# of tornadoes) Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Below Average (0-1)

NAO>-0.12        
WESTUS>23.45    

PNA<0.72         
SO>-1.25

47% / 33% / 42%

Average (2-3)
NAO>-0.12        

WESTUS<23.45    
NATL<25.75

47% / 33% / 42%

Above Average(>3)
NAO<-0.12        

TROP>27.41       
TNH>-0.72

47% / 33% / 42%

Above Average (>1)

WPO>-0.40        
SO>-0.70          

TROP<27.70       
TNH>-0.85        

NINO>24.88

40% / 33% / 21%

Below Average (1-2)
EP<-0.30          

-0.33<WPO<0.47 40% / 33% / 21%

Above Average (>4)

EP<0.85           
WPO<-0.33        
PNA<1.00         
SO<0.44

40% / 33% / 21%

Table 13.  South-central spring tornado forecast algorithm.

Barksdale

Below Average (0-1)
NAO<-0.12        

TROP<27.41       
TNH<0.88

47% / 33% / 42%

Randolph

Average (1)

 -0.40<WPO<0.95   
SO>-0.70          

NATL<26.07       
PNA>-0.71

40% / 33% / 21%

Tinker

*winter indices are capitalized
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Station
Category            

(# of tornadoes) Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Below Average (0)
23<WESTUS<23.5  

WPO<-0.42        
EP>-0.80  

44% / 33% / 33%

Average (1)
WESTUS<23.16    

WPO>0.19        
NAO>-0.67

44% / 33% / 33%

Average (1)
WESTUS>23.45    

TNH>-0.78 44% / 33% / 33%

Above Average (>1)
22.6<WESTUS<23  

WPO<0.02        
TNH<0.95

44% / 33% / 33%

Above Average(>1)
WESTUS>23.45    

TNH<-0.78        
NAO>-0.20

44% / 33% / 33%

Average (1) 22<WESTUS<22.8  
-0.73<NAO<0.71 47% / 33% / 42%

Average (1)

WESTUS>22.78    
EP<0.12           
SO<-0.04          

0.27<WPO<1.06    

47% / 33% / 42%

Above Average (>1)

WESTUS>22.78    
EP<-0.62          
SO<-0.04          

WPO<0.27

47% / 33% / 42%

Average (1)
WPO<-0.08        
PNA>-0.85        

EP>0.53
35% / 25% / 40%

Average (1)

WPO<0.19        
PNA>-0.85        
EP<-0.33          

NAO<-0.25

35% / 25% / 40%

Above Average (>1)
WPO<0.19        
PNA<-0.85 35% / 25% / 40%

Above Average (>1)

WPO<0.19        
PNA>-0.30        

-0.33<EP<0.53     
NAO<-0.25

35% / 25% / 40%

Table 14.  Southeast summer tornado forecast algorithm.

Shaw

Below Average (0) WESTUS<22.64    
WPO<-0.42        

44% / 33% / 33%

Pope

Below Average (0)

WESTUS>22.78    
EP>0.12           

PNA<0.73         
NAO>-1.02

47% / 33% / 42%

Robins

*winter indices are capitalized
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Station
Category            

(# of tornadoes) Criteria*

Tree Accuracy / 
Climatology / 
Improvement

Average (1)
PNA>0.48         
WPO<0.67        
SO<0.15

51% / 25% / 104%

Average (1)
PNA<-0.55        
NAO>-0.62        

TROP<27.40
51% / 25% / 104%

Below Average (0)
ep<0.20           

27.8<trop<28.1 58% / 50% / 16%

Below Average (0)
ep<-0.45          

trop<27.72 58% / 50% / 16%

Average (1)
ep>1.20           
nao>0.05 58% / 25% / 132%

Above Average (>1)
 -0.45<ep<0.20     

trop<27.82         
wpo>-0.45

58% / 25% / 132%

Below Average (0-1)

NATL<26.06       
WESTUS<23.48    

TROP>27.16       
PNA>0.86

56% / 33% / 70%

Average (2)

NATL<26.06       
WESTUS>23.48    

NAO>0.11         
WPO<0.82

56% / 33% / 70%

Above Average (>2)

NATL<26.06       
WESTUS<23.48    

TROP<27.16       
EP<0.75           

NAO>0.32

56% / 33% / 70%

Above Average (>2)
NATL>26.06       

WESTUS<23.35    
SO>1.20

56% / 33% / 70%

Table 15.  South-central summer tornado forecast algorithm.

Barksdale

Below Average (0)  -0.55<PNA<0.18   
EP<0.92

51% / 50% / 2%

Tinker

*winter indices are capitalized

Randolph

Below Average (0) 0.20<ep<1.20 58% / 50% / 16%
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   If the criteria were not met at all, then climatology would still be the best 

prediction, however, there was a significant increase in the algorithm over climatology 

using all three severe weather parameters.  Since the three weather parameters are 

dependent sets with each other, it would be difficult to combine the three data sets into 

one severe weather product, and a lot of information would be lost in the combination 

process.  The advantage of keeping the data sets individualized was that specific long-

range forecasts could still be made with each severe weather parameter.  In addition, the 

three severe weather parameters only partially define the severe weather season since 

there are other parameters that could be used to define it at as well.  Therefore, the 

algorithms in the tables above are to be used separately to characterize the severe weather 

season.   

 Regional trends within the algorithms were difficult to recognize, however, 

connections between indices and the severe weather parameters were made.  The EP 

index was noted several times with the south-central spring and summer precipitation 

forecasts, and the NAO was noted several times with the southeast spring and summer 

tornado forecasts.  However, no further research was done on these findings since that 

would have been another major path that would have swayed from the goal of this 

research.   

 Other trends were also recognized from the results.  Randolph AFB continually 

had the best predictive results for both seasonal thunderstorm forecasts within the 

respective region.  Robins AFB and Barksdale AFB continually had the best predictive 

results for both precipitation forecasts within their respective regions.   
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 Overall the CART results were positive. They confirmed that algorithms with 

reasonable predictability could be produced for forecasting the intensity of the severe 

weather season.  The predictive tables produced in this study are deemed ready to use by 

AFCCC and OWS forecasters to answer such questions each year.   
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V.  Conclusions and Recommendations 

 

5.1  Conclusions 

 

The main goal of this research was to create a climatological algorithm if 

statistical relationships were found between spring and summer severe weather 

parameters and SST and global circulation indices.  Forecast algorithms were created 

using CART analysis, specifically classification trees, which improved upon climatology 

on multiple cases.  Thunderstorm data showed improvements up to 45%.  Precipitation 

data showed improvements up to 73%.  Finally, tornado data showed improvements up to 

132%.  The specific objectives (stated in Chapter 1) were all met to design the predictive 

algorithms.   

SST indices, global circulation indices, and severe weather parameters were all 

defined.  Global circulation indices were divided into two categories:  teleconnection and 

RPCA.  Both categorical indices were used and the results show that both types had 

influences on severe weather parameters, however, the RPCA provided robust indices 

because of an encompassing spatial domain.  The severe weather parameters, 

thunderstorm, precipitation >0.50, tornado, and lightning data, were used to define the 

spring and summer severe weather seasons.  Lightning data would have been used in all 

statistical approaches, however, the small sample size (10 years) created severe 

limitations (Objective 1). 

The identified regions of interest were the southeast and south-central portions of 

the United States.  Accurate representation of each region was adequately covered with 
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three stations in each region.  The three stations provided insight into certain 

climatological spatial trends that existed within each region (Objective 2). 

Thunderstorm, precipitation >0.50, tornado, and lightning data were all collected 

and readily available from AFCCC.  Limitations did exist with all data sources and 

should not be forgotten when analyzing the results, however, a larger sample size was 

used, except lightning data, to help eliminate the effects from these limitations.  During 

the CART analysis, these severe weather parameters were ranked and categorized in the 

classification tree process (Objectives 3-6). 

After data were collected, thunderstorm, precipitation >0.50, and tornado data 

from each station were compared to the global SST and circulation indices using 

traditional statistical methods of regression.  Overall, R2 values were weak (<0.50) for all 

model runs, however, prominent statistical conclusions were pulled from the analysis.  

Proximity of an index to the region of study was noted as a key factor for a high 

significance within the model.  In addition, multiple linear regression showed that SST 

indices appeared more often in model runs than global circulations.  Understanding the 

traditional statistical methods did provide insight into the CART analysis (Objective 7). 

CART analysis was used once traditional statistics could not design the predictive 

algorithm.  Specifically, classification trees developed forecast algorithms with 

accuracies better than climatology.  If the criteria were not met in any of the algorithms, 

climatology would still be the best prediction.  The three weather parameters were not 

combined to produce one severe weather product, however, the thunderstorm, 

precipitation >0.50, and tornado data remained individualized since all three parameters 

should be used to completely define the severe weather season.  Finally, CART analysis, 
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in addition to traditional statistics, provided conclusions into regional trends identified in 

this study (Objective 8). 

CART analysis and traditional statistics provided conclusions about each data set 

as well as regional trends.  First, they showed that there was no advantage of using 

February indices over winter indices, therefore, both indices were used in the final 

classification tree process and climatological, forecast algorithm.  Second, the regional 

trends identified in traditional statistics showed that the PNA and NATL indices 

correlated well with the three stations in the southeast.  Finally, CART analysis showed 

that the EP showed the best relationship several times with the south-central spring and 

summer precipitation forecasts, and the NAO showed the best relationship several times 

with the southeast spring and summer tornado forecasts (Objective 9).   

 Overall, CART results identified positive trends that existed between the severe 

weather parameters and the SST and global circulation indices.  The thunderstorm data 

showed improvements up to 45%, the precipitation data showed improvements up to 

73%, and finally, the tornado data showed improvements up to 132%.   CART confirmed 

that climatological, predictive algorithms could be produced for forecasting the intensity 

of the severe weather season (Objective 10). 

 

5.2  Recommendations 

 

There are several limitations and recommendations that should be considered when 

using such climatological, predictive algorithms.  They are as follows: 
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1. extend the research to examine all global SST and circulation indices.  Only 

the prominent, winter indices were used in this research; 

2. acquire more stations within each region to better understand spatial trends 

and provide forecast algorithms for all stations within the Hub AOR; 

3. use lightning data in the statistical process when more years become available.  

Lightning data provides a more comprehensive coverage of surrounding 

regions of a station and is less prone to error than thunderstorm data; 

4. examine all four Air Force Weather Conus Hubs.  The two Hubs examined 

were the Shaw and Barksdale Hub since past research has shown more 

relationships between severe weather and global circulation indices in those 

regions; 

5. introduce regressional trees from the CART analysis to create actual forecast 

numbers or ranges; 

6. produce a program that would automatically generate the forecast intensity 

from the predictive algorithms.  As of now, forecasters have to use these 

algorithms manually, and automation is needed since it would save forecasters 

time.   
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Appendix A:  Example Classification Tree 
 
 
 
 This example tree (Figure A) will illustrate the three key factors in creating a 

classification tree for predictive purposes.  This specific tree shows spring thunderstorm 

data (predictand) at Barksdale AFB compared with all February SST and global 

circulation indices (predictors).  In each node, three categories were analyzed with 

category 0 being below normal, category 1 being normal, and category 2 being above 

normal.  At node 0, original parent node, the total amount of data is shown (50 in this 

case) and the three categories.  Although the three categories are not split exactly into 

equal thirds, it is assumed close enough for climatological forecast purposes.   

 The purity of the tree was determined at each terminal/child node.  Only the nodes 

with 100% were analyzed and used in the algorithms.  The nodes that fit this case are 

node 4, node 7, node 9, and node 15.   

  Finally, the cross-validation risk estimate would be incorporated to figure out the 

final forecast accuracy for each node.  CART analysis provided the cross-validation risk 

estimate, and in this case, the error was 60%.  Since the error was 60%, then the tree 

accuracy would be 40%.  The improvement would be the tree accuracy minus the 

climatology divided by the climatology, in this case, 21%.   

Any nodes that improved upon climatology (33% in this case) would have shown 

up in the results, and then their criteria would be recorded into the final predictive 

algorithm.  Since only two nodes proved worthy of the final algorithm in this example, 

more classification trees, including all winter indices, would have been created to 

encompass more predictive years.      
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Category % n
0 36.00 18
2 30.00 15
1 34.00 17
Total (100.00) 50

Node 0

Category % n
0 45.45 10
2 9.09 2
1 45.45 10
Total (44.00) 22

Node 2

Category % n
0 62.50 5
2 25.00 2
1 12.50 1
Total (16.00) 8

Node 6

Category % n
0 0.00 0
2 50.00 1
1 50.00 1
Total (4.00) 2

Node 12
Category % n
0 83.33 5
2 16.67 1
1 0.00 0
Total (12.00) 6

Node 11

Category % n
0 35.71 5
2 0.00 0
1 64.29 9
Total (28.00) 14

Node 5

Category % n
0 18.18 2
2 0.00 0
1 81.82 9
Total (22.00) 11

Node 10

Category % n
0 66.67 2
2 0.00 0
1 33.33 1
Total (6.00) 3

Node 16
Category % n
0 0.00 0
2 0.00 0
1 100.00 8
Total (16.00) 8

Node 15

Category % n
0 100.00 3
2 0.00 0
1 0.00 0
Total (6.00) 3

Node 9

Category % n
0 28.57 8
2 46.43 13
1 25.00 7
Total (56.00) 28

Node 1

Category % n
0 0.00 0
2 100.00 7
1 0.00 0
Total (14.00) 7

Node 4
Category % n
0 38.10 8
2 28.57 6
1 33.33 7
Total (42.00) 21

Node 3

Category % n
0 47.06 8
2 35.29 6
1 17.65 3
Total (34.00) 17

Node 8

Category % n
0 83.33 5
2 16.67 1
1 0.00 0
Total (12.00) 6

Node 14
Category % n
0 27.27 3
2 45.45 5
1 27.27 3
Total (22.00) 11

Node 13

Category % n
0 0.00 0
2 71.43 5
1 28.57 2
Total (14.00) 7

Node 18
Category % n
0 75.00 3
2 0.00 0
1 25.00 1
Total (8.00) 4

Node 17

Category % n
0 0.00 0
2 0.00 0
1 100.00 4
Total (8.00) 4

Node 7

BARKSDAL

NATL
Improvement=0.0517

>25.475000000000001

NAO
Improvement=0.0410

>0.20000000000000001

NAO
Improvement=0.0317

>1.3999999999999999<=1.3999999999999999

<=0.20000000000000001

TROP
Improvement=0.0631

>27.609999999999999

WESTUS
Improvement=0.0388

>25.5<=25.5

<=27.609999999999999

<=25.475000000000001

TROP
Improvement=0.0805

>27.765000000000001<=27.765000000000001

WPO
Improvement=0.0663

>-1.45

NINO
Improvement=0.0366

>26.414999999999999<=26.414999999999999

WPO
Improvement=0.0547

>-0.44999999999999996<=-0.44999999999999996

<=-1.45

 

 
Figure A.  An example classification tree that shows spring thunderstorm data at    

     Barksdale AFB compared with all February SST/global circulation indices.
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